Theo Colborn: Remembering the Genius Who Got BPA Out of Your Water Bottles, and So Much More

Published on
by

Theo Colborn: Remembering the Genius Who Got BPA Out of Your Water Bottles, and So Much More

Theo Colborn, who pioneered the research on the links between synthetic toxins like BPA and endocrine disruption, died yesterday at the age of 87.

It was the late 1970s and Theo Colborn was, like pretty much everyone else in the ’70s, getting divorced. She was in her 50s and already retired from a career as a pharmacist.

She’d moved to a hobby farm that was close to the Rocky Mountain Biological Station in Colorado and volunteered as a field researcher, sampling water and insects for signs that they were picking up toxics released by mining operations in the area. When she thought about what she should do next with her life, the answer that came to her was “become an expert in water sampling techniques.”

So Colborn went back to school. In 1985, at 58, she graduated from the University of Wisconsin-Madison with a Ph.D. in zoology and minors in epidemiology, toxicology, and water chemistry. “I wanted to get the education,” she said, in a 1988 Frontline interview,”so that I could maybe undo some of the things that my generation basically foisted on society.”

By the time Colborn died yesterday, at the age of 87, she had immersed herself in decades of research — and inspired even more research — that sought to do just that. The many, many proposed BPA bans? Go back to the very beginning, and you’ll find Colborn. The concern over dwindling sperm counts? Same thing.

After she graduated, Colborn went to work in Washington, D.C., first as a Congressional Fellow and then as an analyst, researching industrial emissions and ozone for the Clean Air Act. When those projects ended, she was hired by two conservation organizations, the World Wildlife Fund and The Conservation Foundation, to put together an overview of Great Lakes water quality with another researcher, Richard Liroff. In the Frontline interview, she talked about what happened next:

I was working on a book on the state of the environment of the Great Lakes. And I pulled all this literature together, lots of papers, you know: fellows working in Canada, people working in the United States, one out on Lake Superior, others over, way over on Lake Ontario had done some work, written their papers, had them published in a number of different journals. None of them knew what the other was doing.

And basically, I sat in a wonderful position where I pulled all this information together. And looking at it I said, “There is something wrong here.” And the easiest thing for me to do is to use — thank goodness for computers — use a spreadsheet at a computer and start producing these spreadsheets.

And as I plotted those names of the animals in the column on the left-hand side, this is called the “Y” column, and then on the “X” column I plotted the effects that were seen in the animals, it began to fall out that there were serious problems and actually population declines, population crashes, actually extirpation of some populations. They disappeared in some places.

What Colborn was seeing was the result of a wide variety of synthetic chemicals that had come into being in the 1950s and ’60s. Even though they were present in the water at very low concentrations, they were subtly changing how the animals in that system developed — how their genes were programmed, how their cells differentiated and spread out through their bodies, and, ultimately, how they were able to survive and reproduce into the next generation. The healthy wildlife around the Great Lakes, often, were those animals that had grown up elsewhere and migrated as adults. When their offspring failed to reach adulthood, or couldn’t reproduce, they were replaced by a fresh fleet of new arrivals. The lakes looked healthy, in other words, but they were a death trap.

Read the full article at Grist.org

Heather Smith

Heather Smith (on Twitter, @strangerworks) is interested in the various ways that humans try to save the environment: past, present, and future.

 

Share This Article