Published on

Crops Face Toxic Timebomb in Warmer World: Study

David Fogerty

A farm worker collects cassava at the expropriated and now redistributed farm of El Charcote in the central state of Cojedes March 25, 2009. (REUTERS/Jorge Silva)

SINGAPORE - Staples such as cassava on which millions of
people depend become more toxic and produce much smaller yields in a
world with higher carbon dioxide levels and more drought, Australian
scientists say.

The findings, presented on Monday at a conference in Glasgow,
Scotland, underscored the need to develop climate-change-resistant
cultivars to feed rapidly growing human populations, said Ros Gleadow
of the Monash University in Melbourne.

Gleadow's team tested cassava and sorghum under a series of climate
change scenarios, with particular focus on different CO2 levels, to
study the effect on plant nutritional quality and yield.

Both species belong to a group of plants that produce chemicals
called cyanogenic glycosides, which break down to release poisonous
cyanide gas if the leaves are crushed or chewed.

Around 10 percent of all plants and 60 percent of crop species produce cyanogenic glycosides.

The team grew cassava and sorghum at three different levels of CO2;
just below today's current levels at about 360 parts per million in the
atmosphere, at about 550 ppm and about double at 710 pm.

Current levels in the air are just under 390 ppm, around the highest
in at least 800,000 years and up by about a third since the start of
the Industrial Revolution.

"What we found was the amount of cyanide relative to the amount of
protein increases," Gleadow told Reuters from Glasgow, referring to

At double current CO2 levels, the level of toxin was much higher while protein levels fell.

The ability of people and herbivores, such as cattle, to break down the cyanide depends largely on eating sufficient protein.

Anyone largely reliant on cassava for food, particularly during drought, would be especially at risk of cyanide poisoning.


While it was possible to use processing techniques to reduce the
level of toxin in the cassava leaves, it was the 50 percent or greater
drop in the number of tubers that caused most concern, Gleadow said.

About 750 million people in Africa, Asia and Latin America rely on
cassava as a staple. The starchy tubers are used to make flour and the
plant is ideal in dry regions because of its hardy nature.

The good news was that the levels of toxin in the tuber didn't increase with CO2, unlike the edible leaves.

"The downside of that is that we found the plant didn't grow nearly as well," she said.

"There's been this common assumption that plants will always grow
better in a high CO2 world. And we've now found that these plants grew
much worse and had smaller tubers."

At the 550 ppm level, the problem was not as serious and this meant scientists had a bit of breathing space.

"We've got 20 to 30 years to develop cultivars, which is going to be
absolutely essential because by then about 1 billion people will
probably be reliant on cassava."

Gleadow's group looked at a type of sorghum commonly fed to cattle
in Australia and Africa and found it became less toxic at the highest
CO2 level. But under drought conditions, leaf toxin levels rose.

She said her team was looking at creating mutations to get rid of the toxin response to drought.

"If we're going to adapt in the future to a world with twice today's
CO2 we need to understand how plants are working, how they are
responding and what cultivars we need to develop."

Her team plans to carry out additional research in Mozambique and study other tropical crops such as taro.

Editing by Alex Richardson

This is the world we live in. This is the world we cover.

Because of people like you, another world is possible. There are many battles to be won, but we will battle them together—all of us. Common Dreams is not your normal news site. We don't survive on clicks. We don't want advertising dollars. We want the world to be a better place. But we can't do it alone. It doesn't work that way. We need you. If you can help today—because every gift of every size matters—please do. Without Your Support We Won't Exist.

Please select a donation method:

Share This Article

More in: